液下泵径向力不平衡原因分析

首页 I 泵阀技术 I 液下泵径向力不平衡原因分析
摘要:产生径向力是因为在采用螺旋型压水室的化工泵中,如果水泵运转时工况离开设计工况,则在叶轮上会受到径向的液体压力。这是由于当离心泵在设计工况运转时,叶轮出口处液体流出时的流速与压水室中液体的流速相等

产生径向力是因为在采用螺旋型压水室的化工泵中,如果水泵运转时工况离开设计工况,则在叶轮上会受到径向的液体压力。这是由于当离心泵在设计工况运转时,叶轮出口处液体流出时的流速与压水室中液体的流速相等,液体流进压水室不产生撞击现象,压水室中各处液体的压强是一样的,故作用于叶轮四周的液体压强相等,在叶轮上不会作用径向力;如果水泵运转的工况为非设计工况(例如流量小于设计工况的流量),则在压水室中液体流速也应比设计工况时的流速小,而从叶轮中流出的液体的流速就应比设计工况时的流速大,可从出口速度三角形中看出。这样,液体流入压水室时,就会产生撞击现象,把液体的动能变为压能,压水室中液体的压强因沿途不断受到撞击提高压强,故从压水室隔舌开始液体压强逐渐增大。

(1)如果液下泵运转的流量大于设计工况流量时,则情况相反:液体自叶轮中流出时的速度比设计工况的速度小,而压水室中液体的速度则比设计工况的速度大;叶轮流出的速度较小的液体流入压水室中产生撞击,使速度增大,压强降低。这样,从压水室隔舌开始,液体压强逐渐减小。

(2)当流量小于设计工况流量时,由于撞击而产生的径向力 P 的方向应当指向离隔舌,并向涡壳中液流的同方向转 90°的方向,这一点极易证明。上沿圆周压强分布线 ABC 是一条上升值与角度成正比的螺旋线。在离隔舌180°的地方开始,做一条与之相同的螺旋线 A′B′,则把隔舌从 180°到 360°之间的压强分成两段,即与AB 完全一样的 A′B 部分和 A′BCB′ 部分。AB 部分引起的径向力与 A′B′ 部分引起的径向力正好抵消,而 A′BCB′的剩余压强大小均相等。因此,径向力 P 的方向应当向上,即指向离隔舌90°的方向。同样,当流量大于设计流量时,这部分的径向力 P 应当是指向下方,即指向从隔舌开始 270°的地方。这就是径向力产生的主要原因。

液下泵流量小于设计流量时,圆周上的动反力如果向反时针方向旋转 90°,则动反力 R 的分布图的形状相像,其合力应当向下。再顺时针转动90°,则得到动反力的合力方向,它是指向隔舌的。于是可知:当水泵流量大于设计流量时,动反力所形成的径向力应当指向隔舌的反方向。把 P 及R 均画在图 1 和图 2 上,并求出其合力 F , F 就是液体作用在叶轮上的径向力。可以看出:当水泵流量小于设计工况时,径向力指向离隔舌不到 90°的方向;当水泵流量大于设计工况时,指向与上述相反,指向离隔舌不到 270°的方向。 径向力的大小可由 A.A 斯切潘诺夫的经验公式计算:
F = 0.172[1-Q /Qd]2 HB2D2ρg
式中:Qd 为设计工况的流量;B2为叶轮出口的宽度。

标签:液下泵

相关文章

你应该了解,化工泵的选型

泵选型看似简单,其实不然。要做出好的选型不是件容易的事情,往往需要依据很多实践经验,涉及泵、密封及辅助系统、调速系统、润滑系统、冷却系统、材料、电机、联轴器、电器、仪表、工艺流程等多方面知识

密封垫的选用原则是什么?

密封垫的选用原则是, 对于要求不高的场合, 可凭经验选取, 不合适时再更换。但对那些要求严格的场合, 例如易爆、 剧毒和可燃气体以及强腐蚀的液体设备、 反应罐和输送管道系统等, 则应根据工作压力、 工作温度、 密封介质的腐蚀性及结合密封面的形式来选用。

泵房设计中几大要点,你都了解吗?

泵房的设计包括泵房位置的选择、水池的设计(包括水池的池底标高、有效水深、水池的进出水管等设计)、水泵选型、水泵布置、泵房内排水沟、集水坑的设计等。

说说流体粘度,常用流体粘度大分享

粘度是流体的物理特性,任何流体都有粘度。流体在流动时,相邻流体层间存在相对运动,流体层之间会产生摩擦阻力,成为粘滞力。粘度是用来衡量粘滞力大小的物理数据。

离心泵腐蚀和侵蚀损伤的修复

对于某些应用,腐蚀和侵蚀损伤是不可避免的。收到维修且损伤严重的泵时,可能看起来与废弃的破铜烂铁无异,但通过适当的修复技术,它们通常可以恢复到原始性能或更好。腐蚀和侵蚀造成的损伤可能发生在静止的泵部件上,也可能发生在旋转叶轮上。

水环真空泵的常见故障和解决方法

如果进水管发生了结垢以及进口电磁阀出现了堵塞情况的时候,泵工作水供应就会因此而出现不足,从而使得水环工作不稳定,此时泵由于偏离设计工况而运行,必然会存在出力下降的情况,进而导致系统真空度下降。